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ABSTRACT go II 01;l

'The examples published by Klee and Minty in 1972 do not

preclude the existence of a pivot rule which will make the simplex

method, at worst, polynomial. In fact, the continuing success of

Dantzig's method suggests that such a rule does exist.

A study of known examples shows that a) those which use

"selective" pivot rules require exponentially large coefficients,

and b', none of the examples' pivot rules are typically used in

practice, either because of computational requirements or due to a

lack of even-handed movement through the column set.

In all "bad" problems, certain improving columns are entered

2m-2 times before other improving columns are entered once. This

is done by making the unused columns "appear" to yield small

objective function improvement.

The purpose of this paper is to explain the Klee-Minty and

Jeroslow constructions, show how they can be modified to be

pathological with small integral coefficients, and then suggest a

"least entered" pivot rule which forces an improving column to be

entered before any other column is entered for the second time.

This rule seems immune to the "deformed product construction" which

is the essence of all known exponential counterexamples.
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Introduction

The simplex method has been solving linear programs with m

constraints in m to 3m pivots for over twenty years. In 1972,

Klee and Minty demonstrated the existence of linear programs with

m inequality constraints in m non-negative variables which require

2m-1 pivots when any improving column may enter and when the

standard "max cj-z." rule is followed. Applying their construction

for the standard rule leads to coefficients in excess of 3

In 1973, Jeroslow published a modification of a second Klee

and Minty construction. His modification is pathological for the

"1maximum increase" rule. An unrefined application of this construction

also yields exponential coefficients.

Other examples involving large coefficients were subsequently

published by Zadeh [1973) for minimum cost network flow problems,

Avis-Chvatal [19771 for Bland's rule (first positive), Murty [1978]

and Fathi [1978] for complementary pivot algorithms, and Goldfarb-

Sit [1980] for a "gradient" selection rule. An example due to

Edmonds for shortest path computations is also known [4].

The above examples may be viewed as "deformed product constructions."

Given a polytope P requiring - 2 pivots with a polynomial

number of dimensions, a new polytope Pm+l is constructed by deforming

a product Pm x V, where V is some polytope usually of low dimension.

m+l mIn the first Klee-Minty construction, P differed from P by one

dimension and two facets (V has one dimension and two facets). In
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the Klee-Minty-Jeroslow construction, Pm+l differed from Pm by

two dimensions and roughly 4k facets, where k is some positive

integer. In the network constructions [161, pm+l differed from

Pm by 2m dimensions and 2m+4 facets.

We show that any linear program with rational coefficients

may be expressed with coefficients 0, 1, -1, and 2. Modifications

of the Klee-Minty and Jeroslow constructions are given with integral

coefficients no greater than four. The Klee-Minty examples are

shown to be equivalent to resource allocation problems with non-

negative coefficients in which all bases have determinants of +1.

In all "bad" examples, the coefficients are chosen so that the

best columns price out moderately, and are not entered until other

columns have been entered exponentially many times. Roughly speaking,

for a deformed product pm+l 1 pm x Vm , this means that the simplex

method performs a 2m  step pivot sequence for Pm before entering

any of the new variables associated with Vm . The pivot sequence

for Pm is then performed again in the reverse order.

Geometrically, the simplex method stays on a lower Pm face of

Pm x V' for - 2m pivots, then moves through the added Vm dimensions

to an "upper" Pm face where it spends another 2m pivots "undoing"

pivots performed on the lower face.

Entering variables from Vm  early causes a permanent move away

from the lower face, killing the exponential growth.

The following rule forces movements away from faces irrespective

of the level or rate of improvement. It was considered primarily for

theoretical purposes after a thought provoking conversation with Arthur

F. Veinott, Jr.
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Least entered rule: Enter the improving variable which has been

entered least often.

The above rule is easy to implement, and when used in conjunction

with the standard or "max increase" rules speeds up both. It is

unlikely to cycle (the cycle must contain all improving columns).

It is our hope that the rule will prove to have a worst case bound

proportional to men, where m is the number of rows and n is

che number of columns. Examples of maximum flow problems requiring

Sm-n pivots using this rule will be given in a forthcoming paper.

Other rules similar to the "least entered" rule which have been

suggested [4] are the Least Recently Considered (LRC) rule of

Cunningham and the Least Recently Basic (LRB) rule of E.L. Johnson.

Both methods were apparently designed for shortest path computations

in networks but have obvious extensions to general linear programming

which would kill the exponential growth of known counterexamples.

Unfortunately, polynomial proofs for the above rules, if they

exist, might be extremely hard, as they would reduce the current best

bound for the diameters of polytopes from - • 2d-2(n - d + ) to a

polynomial in n and d, where n is the number of facets and d,

the dimension.

*

This is similar to the old conjecture E(d,n) i (d-l)(n-d) +1

of Klee [12] which was proven false by Klee and Minty for the

standard rule.
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The Klee-Minty Construction

The first Klee-Minty construction creates from an n-dimensional

polytope Pn with 2n faces requiring 2n-1 pivots when any

improving column may enter a polytope Pn+l with two more faces

requiring 2n+l-l pivots.

The construction is illustrated in Figure 1. The path of

vertices visited in Pn is denoted p0, pl, ... , p n - The first

polytope P1 has two faces (x1  0, x1 < 1) and requires one pivot.

2 1
The second polytope P is obtained from P by adding two additional

constraints -x1/3 + x2 2 0 and xl/3 + x 2  , involving one

additional variable.

It is convenient to think of the pivot sequence for P2 in terms

of the slack variables associated with the various faces. The

initial point pO = (0,0) is determined by s2' 84 basic, s1 , s3

non-basic. The sequence P0 Pl, P2' P3 corresponds to entering

S then s3 , and then s2. The variables s, a4 and sI are

respectively deleted.

P3 is obtained from P2 by adding two more constraints involving

one additional variable. Note in Figure 1 that the pivot sequence

for p3  is essentially the pivot sequence for P2, plus a movement

from the lower face, followed by the sequence for P2 in the reverse

order. We express this pheomenon in general by writing

n+ = , S2n+l' In terms of entering slack variables,

P3 = S1S382 s5 SlS42"

" " I II " ..... 'g ........ . .. ... .....I . ... . . . .. . I



1.Si-O S4-2 max X
0 1

2. (0)

S 4.1 j(1,2/3)

X2  S1-- -S2  mx 2

S3 ~ (1,113)

(0,0)

(0,1,2/3) S

(0,1,0) X 000

Pivot sequence:

No. 2 SI S3 S2
No. 3 S S3 S2 S5  S1 54 S2
No. 4 S S3 S2 S5 S1 S4S2 S7 SIS3 S2 S6 S1S4 S2

Figure 1: An example of the Klee-Minty construction



Fooling the Standard Rule

The examples in Figure 1 take one pivot to solve when the

standard max cj -zj rule is employed. To fool this rule, Klee and

Minty scale the variables so that a much larger change in the entering

slack variable is required to achieve the same objective function

change, or equivalently, to move to the same adjacent vertex.

As an illustration, let (si) denote the relative cost factor

for si. If Afi denotes the change in the objective when si is

entered, then Z(s ) = Af i/As At p0 = (0,0,0) in Figure 1,

C(s1) = 1/9, C(s2) = 1/3, and c(s5) = 1. The standard rule would

enter s., moving from (0,0,0) to (0,0,1), the optimum, in one

pivot. However, if s5 were replaced by s5/16, it would take a

16 unit change in s5  to move from (0,0,0) to (0,0,1) and

C(s5) would be 1/16. A similar replacment of s2 by s2/A would

cause the standard rule to enter s1 and follow the same sequence

as before.

The right hand side of Table I gives a scaling which will make

the standard rule exponential. Note that the coefficients grow at

a rate of 4m .
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Examples with Small Integral Coefficients

The large coefficients in expressions like s /64, or more
8

generally, s2n A , may be eliminated by adding n-l additional

variables and constraints. For the case s8/64, we replace s8

by s with the additional constraints 4s' - s" = 0, 4s" - sO

4 of 8 8 8 0,8

s - s 0, s8 s8, > 0, as done in Table 1. To construct8 80 ~8 ~88
Pm in this fashion using coefficients no greater than 4, m(m-l)

constraints and non-negative variables must be added.

It should benoted that such a'hoefficient reduction" can always

be performed, but the "reduction" is cleanest when the large

coefficients in each column are multiples of a fixed power of two,

for example,

3.2 74J

-12274/

Theorem 1. Let L be a linear program with rational coefficients

whose representation requires a polynomial number of digits. Then L

may be expressed using integral coefficients of 2, 1, -1, and 0

with a polynomial number of variables and constraints.

8mo



Any improving column Standard rule

max x4

x1- sI = 0 replace

xI  + s2  1 1 slacks by

-X1/3 + x2  - s 3 =0 -s3/4

x1/3 + x2  + s4 =1 s4/4

- x 2/3 + x3  - s5 =0 -s5/16

x2 /3 + x3  + s6 1 s6/16

-x 3 /3 + x4  - s7 =0 - 7/64

x3/3 + x4  + s8 1 s8/64

Small Coefficients

Replace a quantity like s 8/64 by a variable s;, along with

the constraints

Ss "0, 4s - si't O, 4s8- s8 0,

all variables > 0

Table 1: Example of the original Klee-Minty construction

(upper left), a scaling of the slacks to fool

the standard rule (upper right), and the addi-

tion of m(m-l) variables and constraints to

yield integral coefficients < 4 (below).
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proof. The bi may be made to be 0 or 1 by suitably multiplying

each row. With this change, let d. denote the least common multiple

of the divisors of elements in column J. Then column j may be

written as

". alj
-1 .d.

a mj

d( k ) 2k
where di, ci, alit ..., amj are integers. Let Z d )2k denote

k

the binary representation of d. and let

max {log2 d j, Llog 2 aijj}

= i=l,...,m

Note that d(k) = 0 or I for every k, J. Define a new variable
i

x x /d by adding new variables x k = 0, 1, 2, ..., qJj iij J

(x(k) = 2 k x) and constraints (Z d k) x ()) - x = 0 and
k

-x(k) + 2x (k-l) = 0, k = 1, ... , q Let Z a(k) k be the binary
+ 0 J k iJ

representation of aij. Now the term x a ij/d may be expressed

(k) -(k)
as Z a x . All coefficients are 0, +1, or 2. The above

k
construction requires Z (q1+l) additional variables and constraints. a

j
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When applying the simplex method to the above problems, care

must be taken to ensure that initial pivots eliminate -k) variables

and retain xj. If xj is eliminated and replaced by x), a

rescaling of variables has occurred which will change relative

cost factors and may affect the pivot sequence.

The following theorem notes some similarities between the Klee-

Minty construction and the "bad" complementary pivot example due to

Murty, and explains how the Avis-Chvatal example was obtained.

th

Theorem 2. Let Ln  denote the n problem constructed on the

left side of Table 1, with s2i' respectively, s2il replaced by

S 21/3
i - , respectively, s 21-l/3i'1.

Then Ln is equivalent to a resource allocation problem with

non-negative integral coefficients, equal objective coefficients,

and basis matrices whose determinants are 1 or -1.

proof. Solving the triangular system

11t



Xl -s1 =0

x I +s a3

-+x 2  3 =0

x2  s 5
3 3 9

x3  S7--- + x4 -- =o

for xl, ..., xn  yields

xI =s 1

1 1 +

x2 3

x3 9

x4= 27

Substituting for xi  in the remaining equations produces the

equivalent problem

12



1aim (sI + s3 + s5 + s7 + .. + s~nlmaximize 3niy~i 8 + 5+ 7+l+

subject to s1 +82 -1

2s + s3 + s4 3

2sI + 2s3 + s5 + 86  M 9

2sI + 2s3 + 2s5 + s7 + s8 = 27

2s + 2s + 2s + 2s + .+ + + S 3n - I

1 3 5 7 2n-l+ +2n' 3

The constraint matrix is of the form (Lii) where L is a lower triangular

matrix with ones on the diagonal. This gives the result. M

th
The above problem can yield the same pivot sequence as the n

scaled problem in Table 1 because all relative cost factors will be

n-l
0 or + 1/3 at every vertex (there will be many ties). To

insure that the same sequence is followed s2i, respectively, s2i-l

must be replaced by

s2i s2i-1 ih 3kil , respectively, kil with k > 3

in which case the constraint matrix would change but would remain

lower triangular.
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An example of Avis and Chvatal, which for m f 3 with a rearranging

of indices is

maximize 102 s + los3 + s5

subject to sI  + s2  - 102

110 420s 1 sa3  + as4 -1

200s1 + 20s3 + s5 + s6 = 106 si >0

may be obtained from Table 1 by replacing the 3's by 10's and taking

k = 102.

The following assertion notes that a bounded pathological example

can always be transformed into one with all aij, bi, and cj 0.

Assertion 1. Let L be a linear program with a finite optimal

solution. Then L may be transformed to an equivalent program L'

in which all coefficients are positive (non-negative).

Proof. Affix the constraint Zxi + s,+1 = M for sufficiently

large M. Then add suitable multiples of this constraint to each

row until all coefficients are positive. The objective function will

have a constant term involving -M which may be disregarded. a

14



Bland's Rule (first improving column)

Table 2 lists the sequence of relative cost factors (si

associated with the vertices P0' "''. P7 of P3 . Notice that the

variables s21 and s21-l are complementary, i.e., s21 a21-l -0

V i, as are their relative cost factors C(s21) C(s21_l) - 0 V i.

The following theorem notes that examples given in Table 1 are

pathological for Bland's Rule. A similar statement can be made for

the forthcoming Jeroslow modification, and for network examples in

[16].

Theorem 3. The examples in Table 1 follow the same pivot sequence

with Bland's rule.

Outline of proof. It suffices to show that the first improving

column prices out best. Let 0 denote the objective function.

For every n, O(p 0) = 0, O(P2n-l) = 1, and the jump in 0 between

lower and upper faces is 1/3. Let p1 = (p,, (P, ) /3 ) and

P2 = (Pi' 1 - k(p)/) for 0 < i < 2n-1. Then the vertex sequence

"i "i

for Pn+1 is

1 1 1 2 2 2P O , P 1 9 ...'' P 2n- l ' P 2n-1 ' 9 ' .. ' P il l PO "

lower face upper face

For each increase in n, the objective change between successive

points on lower (upper) faces decreases by a factor of three. Because

15



1  2 3 84 5  6

0 1 1 1 L0 12 16
1 0 1 1 1-

1 0 9 2 16 0
1 1 1

2 0 - 0 1 1 0

3 0! 0 o 1 09 12 16
4 1 1 1

3 12 16
5 0 1 1

4 120 16
6 0 1 1 0 0 1

9 12 16

1 - 0 0 16-7 0 12 1

Table 2: Relative cost factors associated

with the vertices po, pl' ", P7.

16



the vertices for Pn1are obtained from the vertices for P n by

adding an extra dimension (the objective value), the change in the

entering slack required to move from p i to pilon the lower

(upper) face remains the same. This implies that relative cost

factors for old slacks are decreased in absolute value by a factor

of three for each increase in n. The new slack variables (with the

highest indices) are scaled to price out worse than the other variables.

This observation and its predecessor imply that the lowest indexed

variables, when profitable, price out best. The exact formula, for

C~ 1)> 0, is C(s 2 1) - 4/3n (3/04) which decreases by a factor

of three for each increase in n. 0

17



The Maximum Increase Rule

This rule enters the column yielding the maximum objective

increase. A sequence of "bad" polytopes, P1, ..., pn, will be

constructed recursively. P1 is shown at the top of Figure 2.

It has two dimensions, four faces, and requires two pivots starting

from (0,0) when the objective is maximize x1 . The two "lower

faces" are dotted for the purposes of identification.

The second polytope P 2, is four dimensional and appears

below P1. P2 is a deformed product of P1 with Vi, the two

dimensional polytope shown in the upper right.

P2 is best appreciated by imagining that one is looking down

at the top of a mountain. The shaded edges of p2 correspond to

the upper faces of P1 crossed with V'. The dotted edges of

correspond to the bottom faces of P" crossed with V and are

not all shown. P1 corresponds to the two dimensional polytope

determined by (0,0) and points a and b. Figure 2 is essentially

an approximate projection of p2 onto the VI coordinates, which

are denoted x3 and x4.

P, was designed so that, starting at (0,0), and maximizing the

x3 or "x" coordinate, one first performs the pivot sequence for P1;

executes several pivots involving V1 variables; "reverses" the

sequence for P1; and ends at (1,0).

In terms of entering slack variables, the forward pivot sequence

PO to P8 shown in Figure 2 may be expressed as

18



(0.0)(1.0)VO

s1 ' ~iS4 S 1

Initial polytope .91

V1

(1/2, 512a)

912 = plx V1

Coordinates shown are X3 andX4
the coordinates of V1.

'1

(0. 0) POP8 (1, 0)

Forward pivot sequence po to p8 max x3 , 8 Pivots-

Reverse pivot sequence, pe to p, min X3, 8 Pivot$-

Figure 2: A modification of the Klee-Minty-Jeroslow
construction.
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p2 is a "reversible" polytope, in the sense that eight pivots

are also required if one starts at (1,0) and minimizes x3. The

reverse pivot sequence from (1,0) to (0,0) is shown at the

bottom of Figure 2.

To insure that the pivot sequence for P is performed before

variables in V- are entered, the difference in x coordinates

between v = (0,0) and v, = (1/9, 1/9) is chosen smaller than

the difference in x coordinates between (0,0) and vertex a.

This ensures that pivots involving variables of P are performed

first as long as such pivots are profitable.
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Construction of P3

P is constructed as a deformed product of p2 x V2 . V2

is the same as V except that the slopes of the lines through

(- 1/3, 0), (1/2, 5/24) and (1/2, 5/24), (4/3, 0) are decreased

in absolute value by a factor of 4. This effectively squashes the

top half of P3 so that the difference in x coordinates between

* 2
v0 and vI is 1/45. Variables of P are now more "profitable"

2 2than variables of V2, so the whole pivot sequence for P is

performed before variables of V2 are entered.

Denoting the relevant slacks of V2 corresponding to

s5P s6' s7P s8, s9, sic, in V by sll, s12' s13' s14' s15' s162

the forward pivot sequen-e for P in terms of entering slacks is

SlIS 2 s 5 s6 s7 s 3 s4 s 8  SllS12S13 SlS 2 Sl10 S 9S8 s 3 s4 s 7 s 14

In general, P1n is constructed as a deformed product of Pn-i

and V n - , where Vn- I is the same as VI except the lines through

(- 1/3, 0), (1/2, 5/24) and (1/2, 5/24), (4/3, 0) have their slopes

n-2decreased in absolute value by a factor of 1/4

vI is determined by the intersection of lines y = x and y = x/16 + 1/48.

22



Examples with Small Coefficients

Constraints with small integral coefficients defining P, P2

and P 3are shown in Table 3. The system for e is generated

by taking the system for Pn- and adding the constraints determining

V-, with x 2n1replaced 2nlby x2n-l - (x 2 3 /3) for facets on the

left of the line x 2n-1 1/2 and x 2n-1 replaced by x 2 1 + (x 2n 3/3)

for facets on the right of x2n-1 2 1/2. This yields the deformation,

or tilting of the product. Note that, aside from a translation of

subscripts, the set of constraints for V 2differs from that for V 1

only in the first two inequalities, where a variable x 6 (representing

16x 6) has replaced a variable x (representing 4%4). This corresponds

to reducing the slope of the top two facets by a factor of four.

Testing the Problems

To run the problems it is recommended that the x variables

be eliminated and replaced by slacks. The starting basis then consists

of those slacks which are positive at the point (0,0,0, ... , 0).

For P2 the starting basis would be s 3P B4 9 a~ 79 8g9 s 10 and

the slacks for the bottom two faces of V.

23



max -x + x

x I1 xI + x 2 <1
2 pivots

-x - x < 0
1 2

x I  x 2 _I
X1  2 <

max xI  + 3x + 3x' < 4
13 4-

x3  xI  - 3x3  + 3x <1

4x 4 - x 0 22+4 = 8 pivots

x1 - 3x3 + 3x4  < 0

x1 + 3x3 + 3x4  < 3

xI  - 3x _< 0

x1 + 3x 3  < 3

- 3x 3  N <1 20 pivots

xI  + 3x 3  - 3x<4

max x + 3x 3x" < 4
mx3 5 6 -

x5  x3  - 3x + 3x" < 1535 6

4x ? = 0
6 6

4x' - x" = 0

x3 - 3x5 + 3x6  < 0

x3  + 3x5 + 3x6  < 3

x3  - 3x5  < 0

x3  + 3x5  < 3

x - 3x5  - 3x' < 1

x + 3x - 3x' < 435 6

max x5  + 3x + 3x"'< 4
57 7-

x 7  x5  - 3x 7 + 3x'< 1I

Table 3 x x , 8, unrestricted
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